Numerical Investigation of the Flow Behavior Inside a Supercritical CO2 Centrifugal Compressor

Author:

Ameli Alireza1,Turunen-Saaresti Teemu2,Backman Jari2

Affiliation:

1. Mem. ASME Laboratory of Fluid Dynamics, School of Energy Systems, Lappeenranta University of Technology, Lappeenranta 53850, Finland e-mail:

2. Laboratory of Fluid Dynamics, School of Energy Systems, Lappeenranta University of Technology, Lappeenranta 53850, Finland e-mail:

Abstract

Centrifugal compressors are one of the best choices among compressors in supercritical Brayton cycles. A supercritical CO2 centrifugal compressor increases the pressure of the fluid which state is initially very close to the critical point. When the supercritical fluid is compressed near the critical point, wide variations of fluid properties occur. The density of carbon dioxide at its critical point is close to the liquid density which leads to reduction in the compression work. This paper explains a method to overcome the simulation instabilities and challenges near the critical point in which the thermophysical properties change sharply. The investigated compressor is a centrifugal compressor tested in the Sandia supercritical CO2 test loop. In order to get results with the high accuracy and take into account the nonlinear variation of the properties near the critical point, the computational fluid dynamics (CFD) flow solver is coupled with a look-up table of properties of fluid. Behavior of real gas close to its critical point and the effect of the accuracy of the real gas model on the compressor performance are studied in this paper, and the results are compared with the experimental data from the Sandia compression facility.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3