Identification of Francis Turbine Helical Vortex Rope Excitation by CFD and Resonance Simulation With the Hydraulic System

Author:

Alligne´ Se´bastien1,Nicolet Christophe2,Avellan Franc¸ois1

Affiliation:

1. Laboratory for Hydraulic Machines, EPFL, Lausanne, Switzerland

2. Power Vision Engineering sa`rl, Ecublens, Switzerland

Abstract

Due to the growing development of new renewable energies, which production is difficult to foreseen, power grid is subjected to disturbances. Hydropower plants are one of the solution to restore the grid stability by allowing hydraulic machines, especially Francis turbines, to change quickly of operating points in a very large range of heads and power in order to cover the variation of the electrical demand. In part load conditions, the cavitating vortex rope is an excitation source for the whole hydraulic circuit. The frequency of the excitation may matches with one of the eigenfrequency of the system leading to resonance phenomena. The aim of this paper is to simulate this hydroacoustic resonance by identifying the excitation source with CFD numerical simulations of the cavitating vortex rope and simulating the response of the hydraulic system with a one dimensional compressible model. A one dimensional draft tube model including three key parameters is used: the excitation momentum source corresponding to the force induced by the vortex rope acting on the wall, the excitation mass source induced by the cavitation volume fluctuations and the thermodynamic damping modeling energy dissipation during the phase change between cavitation and liquid. These parameters are computed for the FLINDT reduced scale model with the help of unsteady CFD simulations considering both one phase and two phase simulations. Finally these parameters are injected in the one dimensional hydroacoustic model to simulate the resonance phenomenon. In out of resonance conditions, maximum of pressure fluctuations are found in the draft tube cone with an amplitude of 1% of the turbine head. However, when resonance occurs, maximum amplitude of pressure fluctuations reaches up to 6.8%.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3