A Finite Macro-Element for Cylindrical Layer Modeling

Author:

Provasi Rodrigo1,Martins Clo´vis de Arruda1

Affiliation:

1. University of Sa˜o Paulo, Sa˜o Paulo, SP, Brazil

Abstract

The offshore industry is in constant evolution due to the need of reach increasing water depths for new oil fields exploitation. In this scenario, not only new types of platforms are being designed, but also new types of risers, including flexible pipes and new umbilical cable configurations. The greatest difficulty to generate a new concept for a riser is to determine if it is viable or not. Flexible pipes and umbilical cables are complicated to model, due to the interactions between their layers and the large number of possible arrangements. To predict the behavior of flexible pipes and umbilical cables, adequate models are necessary. One can rely on finite element models, which show a great difficulty in mesh generation and convergence (specially due to the contact pairs). One can also rely on analytical models, which have many limitations due to simplifications (even though they are necessary). Another possible approach is to define macro elements, which represent a component, instead of classical finite elements (such as tetrahedric elements). Related to that approach, this paper presents a tubular element, which describes a cylinder with isotropic properties and can accept various sorts of loads. This element has its displacements and loads described using Fourier series and, for each term of the series, a solution is obtained. The effect is then superposed and the complete solution is obtained. This formulation is implemented and their results compared to those obtained by a classical finite element modeling tool, with good agreement.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Frictional Contact Element for Flexible Pipe Modeling With Finite Macroelements;Journal of Offshore Mechanics and Arctic Engineering;2018-05-02

2. Bonded Flexible Pipe Model Using Macroelements;Journal of Offshore Mechanics and Arctic Engineering;2018-04-26

3. A Three-Dimensional Curved Beam Element for Helical Components Modeling;Journal of Offshore Mechanics and Arctic Engineering;2014-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3