An Experimental Study on Rigid-Object Water-Entry Impact and Contact Dynamics

Author:

Challa Ravi1,Idichandy V. G.2,Vendhan C. P.2,Yim Solomon1

Affiliation:

1. Oregon State University, Corvallis, OR

2. IIT Madras, Chennai, TN, India

Abstract

The dynamics of a generic rigid water-landing object (WLO) during water impact is presented in this paper. Tests from a range of drop heights were performed in a wave basin using a 1/6th-Froude scale model of a practical prototype using different drop mechanisms to determine the water impact and contact effects. The first experimental case involved dropping the WLO by using a rope and pulley arrangement, while the second case employed an electromagnetic release to drop the object. Hydrodynamic parameters including peak acceleration, touchdown pressure and maximum impact/contact force were measured using the two different drop mechanisms. The WLO was assumed as rigid, so the experimental results could be correlated with von Karman and Wagner closed form solutions and the maximum accelerations predicted are bounded by these classical analytical solutions. The major purpose of this study are to use the experiments to determine trends that occur when the object is dropped from successive heights using different drop mechanisms by varying the entry speed, angle of impact and the weight of the object. The predictions from the experimental results were used for subsequent numerical studies. Results from the drop tests show that the impact acceleration and touchdown pressure increases practically linearly with the increase in the height of the drop and the data provides conditions of drop mechanism that keep impact accelerations under specified limits for the WLO prototype.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3