Cryogenic Structural Performance of Corrugated Pipe

Author:

Buitrago Jaime1,Slocum Scott T.1,Hudak Stephen J.2,Long Randy3

Affiliation:

1. ExxonMobil Upstream Research Co., Houston, TX

2. Southwest Research Institute, San Antonio, TX

3. Stress Engineering Services, Houston, TX

Abstract

One alternative to developing offshore gas reserves is to use a floating LNG plant (FLNG) on site and export the LNG using tankers. This alternative requires the use of a reliable LNG transfer system between the FLNG and the tanker under offshore conditions. One such system involves a cryogenic hose, whose main body is a vacuum insulated, pipe-in-pipe hose made of corrugated stainless steel pipe (c-pipe) and flanged terminations. Given the novelty of the transfer system, ExxonMobil conducted an experimental program to understand the structural performance of the basic c-pipe under static and cyclic loading at room and cryogenic temperatures. This paper discusses overall qualification issues and presents the experimental methodology and results of structural performance tests of the full-scale c-pipe at both ambient and cryogenic temperatures. Fourteen full-scale, c-pipe static tests are reported, including tension, compression, bending, torsion, and internal pressure. In addition, 11 axial and three pressure fatigue tests are presented. One key result is that, overall, cryogenic temperature improves structural performance for the limit states tested, indicating that future qualification at room temperature would be sufficient. Moreover, the fatigue performance at both ambient and cryogenic temperatures surpassed the design curve reported in the literature for c-pipe.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3