Evaluation of Critical Conditions in Offshore Vessel Operation by Response Based Optimization Procedures

Author:

Clauss Gu¨nther F.1,Klein Marco1,Sprenger Florian1,Testa Daniel1

Affiliation:

1. Technical University Berlin, Berlin, Germany

Abstract

During the design process of floating structures, different boundary conditions have to be taken into account. Besides the basic determination of the type of vessel, the range of application and the main dimensions at the initial stage, the reliability and the warranty of economical efficiency are an inevitable integral part of the design process. Model tests to evaluate the characteristics and the performance of the floating structure are an important milestone within this process. Therefore it is necessary to determine an adequate test procedure which covers all essential areas of interest. The focus lies on the limiting criteria of the design such as maximum global loads, maximum relative motions between two or more vessels or maximum accelerations, at which the floating structure has to operate or to survive. These criteria are typically combined with a limiting characteristic sea state (Hs, Tp) or a rogue wave. However, the important question remains: What is the worst case scenario for each design parameter — the highest rogue wave or a wave group of certain frequency? And which sea states have to be taken into account for the experimental evaluation of the limiting criteria? As an approach to these challenges, a response based wave generation tool for critical wave sequence detection is introduced. By means of this procedure, model tests can be conducted more efficiently. Besides the theoretical background of the response based wave generation tool, an exemplary practical application for a multi-body system is shown with maximum relative motions as the limiting criterion.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How safe is ‘safe’? Ship dynamics in critical sea states;Ocean Engineering;2013-11

2. Response Based Identification of Critical Wave Scenarios;Journal of Offshore Mechanics and Arctic Engineering;2013-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3