Hierarchical Porous Structure Fabrication Via Hybrid Stereolithography and Inkjet Printing With Sacrificial Liquid

Author:

Yoon Yeowon1,Xu Yang2,Chen Yong3

Affiliation:

1. University of Southern California Center for Advanced Manufacturing; Department of Aerospace and Mechanical Engineering, , Los Angeles, CA 90007

2. University of Southern California Center for Advanced Manufacturing; Daniel J. Epstein Department of Industrial and Systems Engineering, , Los Angeles, CA 90007

3. University of Southern California Center for Advanced Manufacturing; Department of Aerospace and, Mechanical Engineering;, Daniel J. Epstein Department of Industrial and Systems Engineering, , Los Angeles, CA 90007

Abstract

Abstract Inspired by porous morphology in nature, such as bone and lung tissues, synthetic porous materials are widely adopted in engineering applications that require lightweight, thermal resistance, energy absorption, and structural flexibility. One of the main challenges in the current porous material manufacturing techniques is their limited control over individual pore size, connectivity, and distribution. This paper presents a novel additive manufacturing process to fabricate porosity-embedded structures by integrating stereolithography and inkjet printing using a sacrificial liquid–water. A solenoid-based inkjet nozzle dispenses water droplets onto a layer of liquid photopolymer resin. Then the resin layer is photocured by a mask image projection device using a digital light processing device. The photocuring process defines the layer profile and captures the deposited water droplets in the solidified layer. The refilled fresh resin will further embed water droplets and form a new layer for the subsequent water droplet deposition. Three-dimensional (3D) structures with embedded water droplets can be printed layer-by-layer. The captured water will evaporate when heated, leaving an air-filled porous 3D structure. By selectively depositing water droplets and varying inkjet printing parameters, including pressure, nozzle opening time, and jetting frequency, the micropores whose sizes from 100 µm to 500 µm and distributions within the 3D-printed part can be modulated. This hybrid process can fabricate 3D structures with homogenously distributed pores and graded polymer structures with varying porosities. The elastic modulus of 3D-printed foam structures in different pore distributions has been tested and compared.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3