Affiliation:
1. Associate Professor Mechanical Engineering Department, South Tehran Branch, Islamic Azad University, Tehran 443511365, Iran e-mail:
2. Mechanical Engineering Department, West Tehran Branch, Islamic Azad University, Tehran 1949663311, Iran e-mail:
Abstract
In this paper, analytical solution for time-dependent electro–magneto–thermoelastic stresses of a hollow sphere made of a fluid-saturated functionally graded porous piezoelectric material (FGPPM) is presented. All material properties, except Poisson's ratio, vary through the radial direction of the FGPPM spherical structure according to a simple power-law. The general form of thermal, mechanical, and electric potential boundary conditions is considered on the internal and external surfaces of the sphere, and the sphere is under constant electrical and magnetic fields. Stress–strain and strain–displacement relations are used to obtain stress–displacement equations, and then by putting stress–displacement equations in the equilibrium equation, Navier equation is acquired. The homogenous differential heat conduction equation is solved. The nonhomogenous differential Navier equation is solved for two cases. At first, creep strains are ignored and the initial electro–magneto–thermoelastic stresses are obtained. Then considering creep strains singly, the creep stress rates are obtained. Finally, time-dependent creep stress distributions at any time ti are attained.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献