Wave Propagation in Rapid Granular Flows

Author:

Ahn Hojin1

Affiliation:

1. Mem. ASME Faculty of Engineering & Architecture, Yeditepe University, Kayışdağı/Istanbul, Turkey e-mail:

Abstract

One-dimensional wave propagation in granular flow has been investigated using a three-dimensional discrete element model (DEM). Cohesionless, dry, smooth, elastic, hard spheres are randomly distributed in a cylinder-piston system with initial granular temperature and solid fraction. Upon a sudden motion of the piston, subsequent wave propagation in granular materials between two ends of the cylinder is numerically simulated. The simulation results of wave speed normalized by the square root of granular temperature are found to be well correlated as a function of solid fraction. Comparison with several analytical works in the literature shows that the simulated wave speed is in good agreement with the wave speed calculated at the isentropic condition but is higher than that at the constant granular temperature condition. Finally the simulation result is employed to describe shock waves observed in the literature. It has been found that, when particles rapidly flow through an orifice, a shock is formed very near the location of the maximum granular temperature. It has also been observed that a shock can be formed even when the flow does not appear to be choked due to its low density upstream of the orifice.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3