Investigation of Stress State During Cement Hardening and Its Effect on Failure of Cement Sheath in Shale Gas Wells

Author:

Zhao Chaojie12,Jin Yanxin3,Li Jun4,Zaman Musharraf2,Wang Xue3,Miao Yanan5

Affiliation:

1. Sinopec Research Institute of Safety, Engineering Co., Ltd., Qingdao 266000, China;

2. School of Petroleum and Geological Engineering, University of Oklahoma, Norman, OK 73019

3. Sinopec Research Institute of Safety, Engineering Co., Ltd., Qingdao 266000, China

4. College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

5. Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Abstract Consideration of initial stress state after cement hardening provides a vital basis for the prediction of cement failure, which has been overlooked in previously published methodologies partly due to the difficulties in examining this problem rationally. In the present study, the hoop stress at casing-cement interface during cement hardening is investigated experimentally based on the full-scale casing-cement sheath-formation system (CCFS) facility, which is equipped with the real-time stress-strain measurement capability. The hoop stress at casing-cement interface during cement hardening drops sharply, rather than equating with the initial annulus pressure of cement slurry. It presents a higher drawdown under higher annulus pressure and thinner casing, and a lower drawdown under elastic cement slurry and thicker cement sheath. Furthermore, an analytical model taking the effect of cement hardening into account is developed to predict the integrity of cement sheath. Reliability of the model is verified by comparison with field observations. Excellent agreements are observed. The results illustrate that the tensile cracks are likely to occur at the inner cement (inner surface of cement sheath) by the effect of cement hardening, since the hoop stress at inner cement during cement hardening drops greatly and even becomes tensile. A detailed sensitivity analysis illustrates that an elastic cement slurry with a lower elastic modulus works more effectively, which can resolve the sustained casing pressure (SCP) problem in shale gas wells.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3