Experimental Study of the Wake Regions in Wind Farms

Author:

Hasan Alaa S.1,Jackson Randall S.1,Amano Ryoichi S.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 115 E. Reindl Way, Glendale, WI 53212 e-mail:

Abstract

It is desired, through this work, to investigate in detail the scenario that takes place behind a single wind turbine unit by focusing on three parameters; average axial wind velocity component, velocity deficit, and total turbulence intensity. The testing was done at mainstream velocity, U∞, of 5.2 m/s, u and v velocity components were captured by x-probe dual-sensor hot wire anemometer. A massive amount of point data was obtained, which then processed by a matlab script to plot the desired contours through the successive transverse sections along the entire length of the test section. By monitoring the previously mentioned flow parameters, the regions of low velocity and high turbulence can be avoided, while the location of the subsequent wind turbine is selected. The estimation of the distance, at which the inlet flow field will restore its original characteristics after being mixed through the rotor blades, is very important as this is the distance that should separate two successive turbines in an inline configuration wind farm to guarantee the optimum performance and to extract the maximum power out of the subsequent array of turbines. It is found that the hub height axial velocity recovery at six rotor diameters downstream distance is only 82%. This fact means that the power extraction out of the downstream turbine in an inline configuration wind farm is only 55% of the upstream turbine if the same free stream velocity and blade design are adopted.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference49 articles.

1. Aerodynamics of Wind Turbine Wakes: Literature Review,2009

2. Survey of Modeling Methods for Wind Turbine Wakes and Wind Farms;Wind Energy,1999

3. Bossanyi, E. A., Maclean, C., Whittle, G. E., Dunn, P. D., Lipman, N. H., and Musgrove, P. J., 1980, “The Efficiency of Wind Turbine Clusters,” Third International Symposium on Wind Energy Systems, Lyngby, Denmark, Aug. 26–29, pp. 401–416.

4. Reduction of Horizontal Wind Speed in a Boundary Layer With Obstacles;Boundary Layer Meteorol.,1993

5. Effective Short-Cut Modelling of Wind Park Efficiency;Renewable Energy,1997

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3