Mechanical Characterization of Thin SOFC Electrolytes With Honeycomb Support

Author:

Berke Ryan B.,Walter Mark E.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210 e-mail:

Abstract

Planar solid oxide fuel cells are made up of repeating sequences of electrolytes, electrodes, seals, and current collectors. The electrolyte should be as thin as possible for optimal electrochemical efficiency; however, for electrolyte-supported cells, the thin electrolytes are susceptible to damage during production, assembly, and operation. To produce cells that are sufficiently mechanically robust, electrolytes can be made having a cosintered honeycomb structure that supports thin, electrochemically efficient electrolyte membranes. Use of finite element analysis is desirable to mechanically characterize such electrolytes. To maintain reasonable numbers of elements and element aspect ratios, it is not possible to simultaneously model the small-scale details together with the overall membrane response. A two-scale approach is devised: the smaller mesoscale analyzes a representative area of the electrolyte, while the larger macroscale examines the electrolyte as a whole. Elastic properties for the mesoscale model are measured over a range of temperatures using a sonic resonance technique. Effective properties for the macroscale are obtained over a range of mesoscale geometries and can be obtained without needing to rerun the mesoscale simulations. The effective properties are experimentally validated using four-point bend experiments on representative samples. The bulk properties and the effective properties can then be used as material inputs for the macroscale model in order to design cells that are more sufficiently mechanically robust without sacrificing electrochemical performance.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference21 articles.

1. Fuel Cell Materials and Components;Acta Mater.,2003

2. Solid Oxide Fuel Cells;Chem. Soc. Rev.,2003

3. Solid Oxide Fuel Cells: Technology Status;Int. J. Appl. Ceram. Technol.,2005

4. Solid Oxide Fuel Cell Technology—Features and Applications;Solid State Ionics,2004

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3