Affiliation:
1. Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712
2. Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
Abstract
Coal consumption accounted for 36% of America’s CO2 emissions in 2005, yet because coal is a relatively inexpensive, widely available, and politically secure fuel, its use is projected to grow in the coming decades (USEIA, 2007, “World Carbon Dioxide Emissions From the Use of Fossil Fuels,” International Energy Annual 2005, http://www.eia.doe.gov/emeu/iea/carbon.html). In order for coal to contribute to the U.S. energy mix without detriment to an environmentally acceptable future, implementation of carbon capture and sequestration (CCS) technology is critical. Techno-economic studies establish the large expense of CCS due to substantial energy requirements and capital costs. However, such analyses typically ignore operating dynamics in response to diurnal and seasonal variations in electricity demand and pricing, and they assume that CO2 capture systems operate continuously at high CO2 removal and permanently consume a large portion of gross plant generation capacity. In contrast, this study uses an electric grid-level dynamic framework to consider the possibility of turning CO2 capture systems off during peak electricity demands to regain generation capacity lost to CO2 capture energy requirements. This practice eliminates the need to build additional generation capacity to make up for CO2 capture energy requirements, and it might allow plant operators to benefit from selling more electricity during high price time periods. Post-combustion CO2 absorption and stripping is a leading capture technology that, unlike many other capture methods, is particularly suited for flexible or on/off operation. This study presents a case study on the Electric Reliability Council of Texas (ERCOT) electric grid that estimates CO2 capture utilization, system-level costs, and CO2 emissions associated with different strategies of using on/off CO2 capture on all coal-fired plants in the ERCOT grid in order to satisfy peak electricity demand. It compares base cases of no CO2 capture and “always on” capture with scenarios where capture is turned off during: (1) peak demand hours every day of the year, (2) the entire season of peak system demand, and (3) system peak demand hours only on seasonal peak demand days. By eliminating the need for new capacity to replace output lost to CO2 capture energy requirements, flexible CO2 capture could save billions of dollars in capital costs. Since capture systems remain on for most of the year, flexible capture still achieves substantial CO2 emissions reductions.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Reference21 articles.
1. USEIA, 2007, “World Carbon Dioxide Emissions From the Use of Fossil Fuels,” International Energy Annual 2005, http://www.eia.doe.gov/emeu/iea/carbon.html
2. Davidson, R. M.
, 2007, “Post-Combustion Carbon Capture From Coal Fired Plants—Solvent Scrubbing,” Technical Report No. CCC/125, IEA Clean Coal Centre.
3. Baseload Coal Investment Decisions Under Uncertain Carbon Legislation;Bergerson;Environ. Sci. Technol.
4. A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control;Rao;Environ. Sci. Technol.
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献