Acoustic Properties of Solid-Liquid Mixtures and the Limits of Ultrasound Diagnostics—I: Experiments (Data Bank Contribution)

Author:

Atkinson C. M.1,Kyto¨maa H. K.1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Ultrasound as a technique for interrogating two-phase mixtures has the advantages of being nonintrusive, it has a very high frequency response, and is able to penetrate typically opaque highly concentrated mixtures. There exists, however, an inherent compromise in the choice of the frequency of the ultrasound between maximizing spatial resolution and ensuring adequate beam penetration. To this end, the propagation of ultrasound in solid-liquid mixtures has been investigated experimentally for a range of frequencies and concentrations of the dispersed phase. The measured attenuation has been shown to depend roughly linearly on frequency for 0.1<kr<0.75 (where the wavenumber k = 2π/λ, and λ and r are the wavelength and particle radius, respectively), and quadratically for kr > 0.75. As a function of solids concentration, the attenuation displays a maximum at a solids fraction of about 30 percent for the present system of silica beads in water. This robust and reproducible result contradicts models of attenuation that rely on linear superposition of single particle effects. The intensity field produced by a circular disk transducer in a two phase medium at kr~1 shows excellent agreement with the Rayleigh integral with a modified wavenumber and attenuation parameter, and it allows for the prediction of the transducer beam geometry in two phase mixtures for a wide range of frequencies and solids fractions. The limitations of ultrasonic wave propagation as a nonintrusive diagnostic technique, in terms of spatial resolution, have been discussed. Acknowledging these limitations, an ultrasonic instrument for determining the velocity of moving particles at or near maximum packing was built. Preliminary results from this prototypical ultrasonic Doppler velocimeter show good agreement with observations of the settling velocity of silica beads at high concentrations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3