Confined Compression of a Tissue-Equivalent: Collagen Fibril and Cell Alignment in Response to Anisotropic Strain

Author:

Girton T. S.1,Barocas V. H.1,Tranquillo R. T.1

Affiliation:

1. Departments of Chemical Engineering & Materials Science and Biomedical Engineering, University of Minnesota, Minneapolis, MN

Abstract

A method to impose and measure a one dimensional strain field via confined compression of a tissue-equivalent and measure the resulting cell and collagen fibril alignment was developed. Strain was determined locally by the displacement of polystyrene beads dispersed and entrapped within the network of collagen fibrils along with the cells, and it was correlated to the spatial variation of collagen network birefringence and concentration. Alignment of fibroblasts and smooth muscle cells was determined based on the long axis of elongated cells. Cell and collagen network alignment were observed normal to the direction of compression after a step strain and increased monotonically up to 50% strain. These results were independent of time after straining over 24 hr despite continued cell motility after responding instantly to the step strain with a change in alignment by deforming/convecting with the strained network. Since the time course of cell alignment followed that of strain and not stress which, due to the viscoelastic fluid-like nature of the network relaxes completely within the observation period, these results imply cell alignment in a compacting tissue-equivalent is due to fibril alignment associated with anisotropic network strain. Estimation of a contact guidance sensitivity parameter indicates that both cell types align to a greater extent than the surrounding fibrils.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3