Quantifying Uncertainty of Damage in Composites Using a Quasi Monte Carlo Technique

Author:

Pitz Emil J.1,Pochiraju Kishore V.1

Affiliation:

1. Department of Mechanical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, NJ 07030

Abstract

Abstract Property variations in a structure strongly impact the macroscopic mechanical performance as regions with lower strength will be prone to damage initiation or acceleration. Consideration of the variability in material property is critical for high-resolution simulations of damage initiation and propagation. While the recent progressive damage analyses consider randomness in property fields, accurately quantifying the uncertainty in damage measures remains computationally expensive. Stochastic damage analyses require extensive sampling of random property fields and numerous replications of the underlying nonlinear deterministic simulations. This paper demonstrates that a Quasi-Monte Carlo (QMC) method, which uses a multidimensional low discrepancy sobol sequence, is a computationally economical way to obtain the mean and standard deviations in cracks evolving in composites. An extended finite element method (XFEM) method with spatially random strength fields simulates the damage initiation and evolution in a model composite. We compared the number of simulations required for Monte Carlo (MC) and QMC techniques to measure the influence of input variability on the mean crack-length in an open-hole angle-ply tensile test. We conclude that the low discrepancy sampling and QMC technique converges substantially faster than traditional MC methods.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference44 articles.

1. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites,2013

2. Chapter 10—Reliability Analysis;Chang,2015

3. The Stochastic Finite Element Method: Past, Present and Future;Comput. Methods Appl. Mech. Eng.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3