On the Synchronization Behaviour of Coupled Friction-Induced Oscillators Subjected to Base Excitation

Author:

Velayudhan Jithin1,MD Narayanan1,Saha Ashesh1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Calicut, Kerala, 673601, India

Abstract

Abstract The primary objective of this paper is to analyse the synchronization phenomena in a coupled friction-induced oscillator consisting of two cantilever beams with tip-masses subjected to base excitations. The coupling is achieved by connecting a linear spring between the tip-masses which are in frictional contact with a rigid rotating disc. The Pearson time correlation coefficient is used to measure the strength and mode of synchronization between the oscillations of the coupled system. Periodicity of the motions is determined by evaluating the Poincaré map wherein the zero velocity crossing from positive to negative is considered as the Poincaré section. The fundamental frequency of the coupled motion and its harmonics are obtained from the Fast Fourier Transform (FFT) of the time responses. A bifurcation study is conducted to identify the periodicity of motion of both the uncoupled and coupled systems. The coupled system is found to be synchronized for the single-periodic, multi-periodic and quasi-periodic motions, but not for chaotic motions. Multiple basins of attractions (BA) of initial conditions corresponding to different synchronization characteristics are observed. The coupled system shows a large dependence of the mass ratio detuning factor (MRDF) on the synchronization characteristics; in-phase synchronization is obtained for smaller MRDF which eventually becomes out-of-phase for larger MRDF. A special study conducted confirms that the coupling can be used to control the amplitude as well as the stick-phase of motion in friction oscillators.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3