A Higher-Order Theory for Open and Closed Curved Rods and Tubes Using a Novel Curvilinear Cylindrical Coordinate System

Author:

Arbind A.1,Srinivasa A. R.1,Reddy J. N.1

Affiliation:

1. Department of Mechanical Engineering,Texas A&M University,College Station, TX 77843

Abstract

Abstract In this study, the governing equation of motion for a general arbitrary higher-order theory of rods and tubes is presented for a general material response. The impetus for the study, in contrast to the classical Cosserat rod theories, comes from the need to study bulging and other deformation of tubes (such as arterial walls). While Cosserat rods are useful for rods whose centerline motion is of primary focus, here we consider cases where the lateral boundaries also undergo significant deformation. To tackle these problems, a generalized curvilinear cylindrical coordinate (CCC) system is introduced in the reference configuration of the rod. Furthermore, we show that this results in a new generalized frame that contains the well-known orthonormal moving frames of Frenet and Bishop (a hybrid frame) as special cases. Such a coordinate system can continuously map the geometry of any general curved three-dimensional (3D) structure with a reference curve (including general closed curves) having continuous tangent, and hence, the present formulation can be used for analyzing any general rod or pipe-like 3D structures with variable cross section (e.g., artery or vein). A key feature of the approach presented herein is that we utilize a non-coordinate “Cartan moving frame” or orthonormal basis vectors, to obtain the kinematic quantities, like displacement gradient, using the tools of exterior calculus. This dramatically simplifies the calculations. By the way of this paper, we also seek to highlight the elegance of the exterior calculus as a means for obtaining the various kinematic relations in terms of orthonormal bases and to advocate for its wider use in the applied mechanics community. Finally, the displacement field of the cross section of the structure is approximated by general basis functions in the polar coordinates in the normal plane which enables this rod theory to analyze the response to any general loading condition applied to the curved structure. The governing equation is obtained using the virtual work principle for a general material response, and presented in terms of generalized displacement variables and generalized moments over the cross section of the 3D structure. This results in a system of ordinary differential equations for quantities that are integrated across the cross section (as is to be expected for any rod theory).

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3