Affiliation:
1. Department of Engineering Science and Mechanics, Virginia Polytechnic Institute & State University, Blacksburg, Va. 24061
Abstract
The magnitude of the maximum shear strain at the free edge of axially loaded [θ2/–θ2]s and [(± θ)2]s composite laminates was investigated experimentally and numerically to ascertain the actual value of strain concentration in resin matrix laminates and to determine the accuracy of finite element results. Experimental results using moire´ interferometry show large, but finite, shear strain concentrations at the free edge of graphite-epoxy and graphite-polyimide laminates. Comparison of the experimental results with those obtained using several different finite element representations showed that a four-node isoparametric finite element provided the best and most trouble-free numerical results. The results indicate that the ratio of maximum shear strain at the free edge to applied axial strain varies with fiber orientation and does not exceed nine for the most critical angle which is 15 deg.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献