Methodology for Global Optimization of Computationally Expensive Design Problems

Author:

Koullias Stefanos1,Mavris Dimitri N.2

Affiliation:

1. Aerospace Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

2. Professor Aerospace Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

Abstract

The design of unconventional systems requires early use of high-fidelity physics-based tools to search the design space for improved and potentially optimum designs. Current methods for incorporating these computationally expensive tools into early design for the purpose of reducing uncertainty are inadequate due to the limited computational resources that are available in early design. Furthermore, the lack of finite difference derivatives, unknown design space properties, and the possibility of code failures motivates the need for a robust and efficient global optimization (EGO) algorithm. A novel surrogate model-based global optimization algorithm capable of efficiently searching challenging design spaces for improved designs is presented. The algorithm, called fBcEGO for fully Bayesian constrained EGO, constructs a fully Bayesian Gaussian process (GP) model through a set of observations and then uses the model to make new observations in promising areas where improvements are likely to occur. This model remedies the inadequacies of likelihood-based approaches, which may provide an incomplete inference of the underlying function when function evaluations are expensive and therefore scarce. A challenge in the construction of the fully Bayesian GP model is the selection of the prior distribution placed on the model hyperparameters. Previous work employs static priors, which may not capture a sufficient number of interpretations of the data to make any useful inferences about the underlying function. An iterative method that dynamically assigns hyperparameter priors by exploiting the mechanics of Bayesian penalization is presented. fBcEGO is incorporated into a methodology that generates relatively few infeasible designs and provides large reductions in the objective function values of design problems. This new algorithm, upon implementation, was found to solve more nonlinearly constrained algebraic test problems to higher accuracies relative to the global minimum than other popular surrogate model-based global optimization algorithms and obtained the largest reduction in the takeoff gross weight objective function for the case study of a notional 70-passenger regional jet when compared with competing design methods.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3