Global Optimization Under Uncertainty and Uncertainty Quantification Applied to Tractor-Trailer Base Flaps

Author:

Freeman Jacob A.1,Roy Christopher J.2

Affiliation:

1. Department of Aeronautics and Astronautics, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH 45433 e-mail:

2. Department of Aerospace and Ocean Engineering, Virginia Tech, 215 Randolph Hall, Blacksburg, VA 24061 e-mail:

Abstract

Using a global optimization evolutionary algorithm (EA), propagating aleatory and epistemic uncertainty within the optimization loop, and using computational fluid dynamics (CFD), this study determines a design for a 3D tractor-trailer base (back-end) drag reduction device that reduces the wind-averaged drag coefficient by 41% at 57 mph (92 km/h). Because it is optimized under uncertainty, this design is relatively insensitive to uncertain wind speed and direction and uncertain deflection angles due to mounting accuracy and static aeroelastic loading. The model includes five design variables with generous constraints, and this study additionally includes the uncertain effects on drag prediction due to truck speed and elevation, steady Reynolds-averaged Navier–Stokes (RANS) approximation, and numerical approximation. This study uses the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) optimization and uncertainty quantification (UQ) framework to interface the RANS flow solver, grid generator, and optimization algorithm. The computational model is a simplified full-scale tractor-trailer with flow at highway speed. For the optimized design, the estimate of total predictive uncertainty is +15/−42%; 8–10% of this uncertainty comes from model form (computation versus experiment); 3–7% from model input (wind speed and direction, flap angle, and truck speed); and +0.0/−28.5% from numerical approximation (due to the relatively coarse, 6 × 106 cell grid). Relative comparison of designs to the no-flaps baseline should have considerably less uncertainty because numerical error and input variation are nearly eliminated and model form differences are reduced. The total predictive uncertainty is also presented in the form of a probability box, which may be used to decide how to improve the model and reduce uncertainty.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference51 articles.

1. Describing the Uncertainties in Experimental Results;Exp. Therm. Fluid Sci.,1988

2. Mason, W. T., Jr., and Beebe, P. S., 1978, “The Drag Related Flowfield Characteristics of Trucks and Buses,” Symposium on Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles, General Motors Research Laboratories, Plenum Press, Warren, MI.

3. Truck Aerodynamics Reborn—Lessons From the Past,2003

4. Full-Scale Wind Tunnel Tests of Production and Prototype, Second-Generation Aerodynamic Drag-Reducing Devices for Tractor-Trailers,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3