Analysis of Interfacial Cracks in a TBC/Superalloy System Under Thermomechanical Loading

Author:

Nusier S. Q.1,Newaz G. M.1

Affiliation:

1. Wayne State University, Mechanical Engineering, 5050 Anthony Wayne Drive, Detroit, MI 48202

Abstract

In thermal barrier coatings (TBC) residual stresses develop during cool down from processing temperature due to the thermal expansion mismatch between the different layers (substrate, bond coat, and TBC). These residual stresses can initiate micro-cracks at the bond coat/TBC interface and can lead to debonding at the bond coat/TBC interface. The effect of voids or crack-like flaws at the interface can be responsible for initiating debonding and accelerating the oxidation process. Effect of oxide layer growth between bond coat and ceramic layer (TBC) can be modeled as volume increase. In this work we represent this change in volume as an induced pressure across the interface. Mixed-mode fracture analysis of a thin circular delamination in an-axisymmetrically multi-layer circular plate is developed. Geometrical nonlin-earity is included in the analysis, since we have a large deflection case. The elastic deformation problem of a circular plate subjected to a clamped boundary condition at the edge of the delamination, an out of plane pressure load, and a compressive stress due to thermal mismatch between different layers, was solved numerically using a Rayleigh–Ritz method. The strain energy release rate was evaluated by means of the path-independent M-integral. The numerical results of this problem based on the energy method were verified using finite element method. Both methods correlate well in predicting the energy release rate for Mode I and Mode II, deflection, and postbuckling solutions. The energy release rates G, for both Mode I and Mode II using virtual crack extension method, were evaluated. The specimen was cooled down from processing temperature of 1000°C to 0°C. The variation of the properties as a function of temperature was used for analysis. It was found that the use of temperature dependent properties in contrast to constant properties provides significantly different values of J-integral and G.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3