Statistical Analysis of Perfect Contact and Wear Durability Conditions of a Single-Degree-of-Freedom Contact Slider

Author:

Ono Kyosuke1,Iida Kohei2

Affiliation:

1. Department of Mechanical Engineering and Science,

2. Graduate School of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8852, Japan

Abstract

In this paper, the design condition of a single-degree-of-freedom (1DOF) contact slider over a random wavy surface of a disk is analyzed statistically. It is numerically confirmed that when the slider is in contact with a disk, spacing variation histograms are close to Gaussian even if surface waviness histogram is not close to Gaussian. The design condition of the slider and the surface waviness necessary for perfect contact sliding is derived from 3σs<δ, where σs and δ are the standard deviation of spacing variation and the static penetrating depth, respectively, and it is verified both numerically and experimentally. The necessary condition for wear durability under uniform contact pad pressure is also derived. An example of the slider-to-disk interface design which satisfies both perfect contact sliding and wear durability is shown. In order to evaluate σs adequately, frequency response of slider must be integrated over the range from fr/2 to 2 fr where fr is the contact resonance frequency. It is found that a disk surface should be extremely smooth to satisfy both the perfect contact sliding and wear durability conditions. [S0742-4787(00)03001-0]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3