Efficient and Accurate Calculation of Discrete Frequency Response Functions and Impulse Response Functions

Author:

Xu Y. F.1,Zhu W. D.21

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 e-mail:

2. Professor Fellow ASME Division of Dynamics and Control, School of Astronautics, Harbin Institute of Technology, P.O. Box 137, Harbin 150001, China;

Abstract

Modal properties of a structure can be identified by experimental modal analysis (EMA). Discrete frequency response functions (FRFs) and impulse response functions (IRFs) between response and excitation series are bases for EMA. In the calculation of a discrete FRF, the discrete Fourier transform (DFT) is applied to both response and excitation series, and a transformed series in the DFT is virtually extended to have an infinite length and be periodic with a period equal to the length of the series; the resulting periodicity can be physically incorrect in some cases, which depends on an excitation technique used. An efficient and accurate methodology for calculating discrete FRFs and IRFs is proposed here, by which fewer spectral lines are needed and accuracies of resulting FRFs and IRFs can be maintained. The relationship between an IRF from the proposed methodology and that from the least-squares (LS) method is shown. A coherence function extended from a new type of coherence functions is used to evaluate qualities of FRFs and IRFs from the proposed methodology in the frequency domain. The extended coherence function can yield meaningful values even with response and excitation series of one sampling period. Based on the extended coherence function, a fitting index is used to evaluate overall qualities of the FRFs and IRFs. The proposed methodology was numerically and experimentally applied to a two degrees-of-freedom (2DOF) mass–spring–damper system and an aluminum plate to estimate their FRFs and IRFs, respectively. In the numerical example, FRFs and IRFs from the proposed methodology agree well with theoretical ones. In the experimental example, an FRF and its associated IRF from the proposed methodology with a random impact series agreed well with benchmark ones from a single impact test.

Publisher

ASME International

Subject

General Engineering

Reference18 articles.

1. Applied Frequency-Domain System Identification in the Field of Experimental and Operational Modal Analysis,2004

2. James, G. H., Carne, T. G., Lauffer, J. P., and Nard, A. R., 1992, “Modal Testing Using Natural Excitation,” 10th International Modal Analysis Conference (IMAC X), San Diego, CA, Feb. 3–7, pp. 1209–1216.

3. Cable Tensioning Control and Modal Identification of a Circular Cable-Stayed Footbridge;Exp. Tech.,2010

4. Variability of Modal Parameters Measured on the Alamosa Canyon Bridge,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3