Some Flow and Thermal Phenomena at Microscale

Author:

Li Zhi-Xin1,Guo Zeng-Yuan1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

The physical mechanisms for the size effects on the flow and heat transfer have been divided into two classifications: (a) variations of the predominant factors influence the relative importance of various phenomena in the flow and heat transfer as the characteristic length decrease, even if the continuum assumption is still valid; (b) the continuum assumption breaks down as the characteristic length of the flow becomes comparable to the mean free path of the molecules. The departure of most flow and thermal phenomena in the MEMS from conventional ones is due to the variation of predominant factors in the flow and heat transfer problems, rather than that Navier-Stokes equation and Fourier heat conduction equation etc are no longer valid. Due to the larger surface to volume ratio for microchannels and microdevices, factors related to surface effects have more impact to microscale flow and heat transfer. For example, surface friction induced flow compressibility makes the fluid velocity profiles flatter and leads to higher friction factors and Nusselt numbers; surface roughness is likely responsible for the increased friction factor, the early transition from laminar to turbulent flow and Nusselt number; and other effects, such as the axial heat conduction in the channel wall, the channel surface geometry, surface electrostatic charges, and measurement errors, could lead to different flow and heat transfer behaviors from that at conventional scales. The condensation/evaporation across the liquid-vapor interface and the liquid-vapor nucleation are processes at nanometer scale. In these cases the macroscopic approach is hard to reveal the details at nanometer scales, while the molecular dynamic simulation is a powerful tool to describe such microscopic processes, and has been applied to investigate the density and temperature profiles across the liquid-vapor interface. The condensation coefficient on the liquid-vapor interface under thermodynamic equilibrium condition has been well predicted based on the characteristic time method, which can distinguish the condensed particles from the reflected particles. Molecular dynamics simulations show that liquid-vapor nucleation undergoes three stages, namely, cavity growth, cavity coalescence and bubble formation.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3