Probabilities of Agreement for Computational Model Validation

Author:

Ledwith Matthew C.1,Hill Raymond R.1,Champagne Lance E.1,White Edward D.2

Affiliation:

1. Department of Operational Sciences, Air Force Institute of Technology, Wright-Patterson AFB , OH 45433

2. Department of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson AFB , OH 45433

Abstract

AbstractDetermining whether a computational model is valid for its intended use requires the rigorous assessment of agreement between observed system responses of the computational model and the corresponding real world system or process of interest. In this article, a new method for assessing the validity of computational models is proposed based upon the probability of agreement (PoA) approach. The proposed method quantifies the probability that observed simulation and system response differences are small enough to be considered acceptable, and hence, the two systems can be used interchangeably. Rather than relying on Boolean-based statistical tests and procedures, the distance-based probability of agreement validation metric (PoAVM) assesses the similarity of system responses used to predict system behaviors by comparing the distributions of output behavior. The corresponding PoA plot serves as a useful tool for summarizing agreement transparently and directly while accounting for potentially complicated bias and variability structures. A general procedure for employing the proposed computational model validation method is provided which leverages bootstrapping to overcome the fact that in most situations where computational models are employed, one’s ability to collect real world data is limited. The new method is demonstrated and contextualized through an illustrative application based upon empirical data from a transient-phase assembly line manufacturing process and a discussion on its desirability based upon an established validation framework.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference57 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3