A Curved Compliant Differential Mechanism With Neutral Stability

Author:

Mak Robin1,Amoozandeh Nobaveh Ali1,Radaelli Giuseppe1,Herder Just L.1

Affiliation:

1. Delft University of Technology Department of Precision and Microsystems Engineering, , Delft 2628 CD , The Netherlands

Abstract

AbstractDifferential mechanisms are remarkable mechanical elements that are widely utilized in various systems; nevertheless, conventional differential mechanisms are heavy and difficult to use in applications with limited design space. This paper presents a curved differential mechanism that utilizes a lightweight, compliant structure. This mechanism acquires its differential characteristic by having a high rotational stiffness when the mechanism is symmetrically actuated on two sides, while having a low rotational stiffness when actuated only on one side. To make the mechanism neutrally stable, the intrinsic elastic strain energy required for deformation of the compliant differential is compensated for by the reintroduction of potential energy, which is provided by two preloaded springs. The rotational stiffness of the one-sided actuation of the compliant differential mechanism around the neutral position is hypothesized to be adjustable by changing the preload of the springs. The stiffness can be positive, zero, or negative, indicating that the mechanism can be neutral or bistable. This hypothesis is investigated using a simulated model in Ansys Parametric Design Language (APDL) using optimized parameters to achieve the desired stiffness for the mechanism. The simulated model is validated using an experimental setup for both the one-sided and symmetrical actuation stages. The experimental results showed a high correlation with the simulation results. The mechanism with optimized dimensions and preload demonstrated neutral stability over a 16deg range. Bistability was discovered for preloads greater than the optimized preload. At θ = 0, a linear relationship was discovered between the spring preload and the rotational stiffness of the mechanism. Furthermore, an output/input kinematic performance of 0.97 was found for the simulated results and 0.95 for the experimental results.

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

1. The Antikythera Mechanism Reconsidered;Wright;Interdiscipl. Sci. Rev.,2007

2. The Chinese South—Seeking Chariot: A Simple Mechanical Device for Visualizing Curvature and Parallel Transport;Santander;Am. J. Phys.,1992

3. Thin-Walled Warping Beams for Differential Mechanism Applications;Valentijn,2020

4. A compliant Continuously Variable Transmission (CVT);Amoozandeh Nobaveh;Mech. Mach. Theory,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3