Optimization of a Real-Time Simulator Based on Recurrent Neural Networks for Compressor Transient Behavior Prediction

Author:

Venturini M.1

Affiliation:

1. Engineering Department in Ferrara (ENDIF), University of Ferrara, Via Saragat, 1, 44100 Ferrara, Italy

Abstract

In this paper, feed-forward recurrent neural networks (RNNs) with a single hidden layer and trained by using a back-propagation learning algorithm are studied and developed for the simulation of compressor behavior under unsteady conditions. The data used for training and testing the RNNs are both obtained by means of a nonlinear physics-based model for compressor dynamic simulation (simulated data) and measured on a multistage axial-centrifugal small-size compressor (field data). The analysis on simulated data deals with the evaluation of the influence of the number of training patterns and of each RNN input on model response, both for data not corrupted and corrupted with measurement errors, for different RNN configurations, and different values of the total delay time. For RNN models trained directly on experimental data, the analysis of the influence of RNN input combination on model response is repeated, as carried out for models trained on simulated data, in order to evaluate real system dynamic behavior. Then, predictor RNNs (i.e., those that do not include among the inputs the exogenous inputs evaluated at the same time step as the output vector) are developed and a discussion about their capabilities is carried out. The analysis on simulated data led to the conclusion that, to improve RNN performance, the adoption of a one-time delayed RNN is beneficial, with an as-low-as-possible total delay time (in this paper, 0.1s) and trained with an as-high-as possible number of training patterns (at least 500). The analysis of the influence of each input on RNN response, conducted for RNN models trained on field data, showed that the single-step-ahead predictor RNN allowed very good performance, comparable to that of RNN models with all inputs (overall error for each single calculation equal to 1.3% and 0.9% for the two test cases considered). Moreover, the analysis of multi-step-ahead predictor capabilities showed that the reduction of the number of RNN calculations is the key factor for improving its performance over a significant time horizon. In fact, when a high test data sampling time is chosen (in this paper, 0.24s), prediction errors were acceptable (lower than 1.9%).

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Reliable NARX Models of Gas Turbine Cold, Warm, and Hot Start-Up;Journal of Engineering for Gas Turbines and Power;2018-04-23

2. NARX models for simulation of the start-up operation of a single-shaft gas turbine;Applied Thermal Engineering;2016-01

3. Black-box modeling, simulation, and control of GTs;Gas Turbines Modeling, Simulation, and Control;2015-10-16

4. Application of integrated fuzzy logic and neural networks to the performance prediction of axial compressors;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2015-07-24

5. Gas Turbine Health State Determination: Methodology Approach and Field Application;International Journal of Rotating Machinery;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3