Affiliation:
1. Engineering Mechanics Corporation of Columbus, Columbus, OH
2. Dominion Engineering, Inc., Reston, VA
Abstract
In the last 7 years, the incidences of cracking in Alloy 600 control rod drive mechanism (CRDM) tubes and their associated welds have increased significantly. The cracking mechanism has been attributed to pressurized water stress corrosion cracking (PWSCC) and has been shown to be driven by welding residual stresses and operational stresses in the weld region. During this time period, both the industry and the US Nuclear Regulatory Commission have been conducting detailed welding simulation analyses to predict the magnitude of these stresses in both the weld and tube material. To this point, a direct comparison of these analysis methodologies and results has not been made. In this paper, weld residual stress results from U.S. industry (conducted by Dominion Engineering) and the U.S. NRC (conducted by Engineering Mechanics Corporation of Columbus) for a steep angle (53 degrees) CRDM nozzle are compared. This comparison was performed for different yield strength tube materials, however only the low yield strength results are presented in this paper. The comparison illustrates the effect of weld analyses assumptions and suggests that simplifications in the analyses, i.e., lumping weld passes or material property assumptions, may lead to high predicted weld residual stresses.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献