Affiliation:
1. Iran University of Science and Technology, Arak, Iran
2. Azad University, Arak, Iran
Abstract
Buckling analysis of simply supported functionally graded cylindrical shells under mechanical loads is presented in this paper. The Young’s modulus of the shell is assumed to vary as a power form of the thickness coordinate variable. The shell is assumed to be under three types of mechanical loadings, namely, axial compression, uniform external lateral pressure, and hydrostatic pressure loading. The equilibrium and stability equations are derived based on the first order shear deformation theory. Resulting equations are employed to obtain the closed-form solution for the critical buckling load. The influences of dimension ratio, relative thickness and the functionally graded index on the critical buckling load are studied. The results are compared with the known data in the literature.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献