Development of New Material Testing Apparatus in High-Pressure Hydrogen and Evaluation of Hydrogen Gas Embrittlement of Metals

Author:

Fukuyama Seiji1,Imade Masaaki1,Yokogawa Kiyoshi1

Affiliation:

1. National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Abstract

A new type of apparatus for material testing in high-pressure gas of up to 100 MPa was developed. The apparatus consists of a pressure vessel and a high-pressure control system that applies the controlled pressure to the pressure vessel. A piston is installed inside a cylinder in the pressure vessel, and a specimen is connected to the lower part of the piston. The load is caused by the pressure difference between the upper room and the lower room separated by the piston, which can be controlled to a loading mode by the pressure valves of the high-pressure system supplying gas to the vessel. Hydrogen gas embrittlement (HGE) and internal reversible hydrogen embrittlement (IRHE) of austenitic stainless steels and iron- and nickel-based superalloys used for high-pressure hydrogen storage of fuel cell vehicle were evaluated by conducting tensile tests in 70 MPa hydrogen. Although the HGE of these metals depended on modified Ni equivalent, the IRHE did not. The HGE of austenitic stainless steels was larger than their IRHE; however, the HGE of superalloys was not always larger than their IRHE. The effects of the chemical composition and metallic structure of these materials on the HGE and IRHE were discussed. The HGE of austenitic stainless steels was examined in 105 MPa hydrogen. The following were identified; SUS304: HGE in stage II, solution-annealed SUS316: HGE in stage III, sensitized SUS316: HGE in stage II, SUS316L: HGE in FS, SUS316LN: HGE in stage III and SUS310S: no HGE.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3