Affiliation:
1. Carnegie Institute of Technology, Carnegie-Mellon University, Pittsburgh, PA 15213
Abstract
This paper presents a general approach for modeling shrouded blade vibration that takes into consideration the nonlinear friction constraint at the shroud interface. In this approach, linear structures are characterized by receptances and shroud constraints by nonlinear impedances. The proposed methodology is presented in detail for simplified models of the bladed disk and shroud interface. The corresponding governing equations for the dynamic response are derived for both tuned and mistuned stages. As an example the method is applied to an idealized tuned stage. Two cases are considered, a lubricated shroud for which the coefficient of friction is equal to zero, and a frictionally constrained shroud. The effect of varying the shroud-to-shroud preload is studied. In the lubricated case nonlinear behavior is seen when vibrations are strong enough to result in separation of the shroud interfaces. In the case of finite friction there is a profound change in resonant frequencies when the preload is increased sufficiently to prevent gross slip at the shrouds.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献