Estimating Recoverable Performance Degradation Rates and Optimizing Maintenance Scheduling

Author:

Allen Cody W.1,Holcomb Chad M.1,de Oliveira Maurício2

Affiliation:

1. Solar Turbines Incorporated, San Diego, CA e-mail:

2. Department of Mechanical and Aeronautical Engineering, University of California, 9500 Gilman Drive, San Diego, CA 92093-0411 e-mail:

Abstract

Many of the components on a gas turbine are subject to fouling and degradation over time due to debris buildup. For example, axial compressors are susceptible to degradation as a result of debris buildup on compressor blades. Similarly, air-cooled lube oil heat exchangers incur degradation as a result of debris buildup in the cooling air passageways. In this paper, we develop a method for estimating the degradation rate of a given gas turbine component that experiences recoverable degradation due to normal operation over time. We then establish an economic maintenance scheduling model, which utilizes the derived rate and user input economic factors to provide a locally optimal maintenance schedule with minimized operator costs. The rate estimation method makes use of statistical methods combined with historical data to give an algorithm with which a performance loss rate can be extracted from noisy data measurements. The economic maintenance schedule is then derived by minimizing the cost model in user specified intervals and the final schedule results as a combination of the locally optimized schedules. The goal of the combination of algorithms is to maximize component output and efficiency, while minimizing maintenance costs. The rate estimation method is validated by simulation where the underlying noisy data measurements come from a known probability distribution. Then, an example schedule optimization is provided to validate the economic optimization model and show the efficacy of the combined methods.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference16 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3