Study on the Corrosion Behavior and Numerical Simulation of TC18 Titanium Alloy Under Tensile Stress

Author:

Miao Yuanyang1,Lv Shengli23

Affiliation:

1. Northwestern Polytechnical University College of Aeronautics, , Xi’an 710072 , China

2. Northwestern Polytechnical University College of Aeronautics, , Xi’an 710072 , China ;

3. Southern Marine Science and Engineering Guangdong Laboratory Innovation Group of Marine Engineering Materials and Corrosion Control, , Zhuhai 519080 , China

Abstract

Abstract Both understanding and simulation of the process of corrosion damage are crucial for the prediction of remaining service life of engineering structures, sound reliability analysis, and design for the purpose of enhancing the overall resistance of the material to corrosion damage. A coupled mechano-electrochemical peridynamic (PD) corrosion model was established by using the PD corrosion theory and the mechanochemical effect theory. The model is capable of simulating the occurrence of degradation caused by the conjoint and mutually interactive influences of mechano-electrochemical phenomena. Corrosion behavior of TC18 titanium alloy in EXCO solution under stress loads of 31% σ0.2, 47% σ0.2, and 62% σ0.2 was studied. The effect of tensile loads on the corrosion behavior of TC18 titanium alloy was examined by combining the micromorphology and electrochemical parameters to verify the dependence of reaction rate occurring at the anode on tensile stress. Results of this study shed light that as the stress level increases, the corrosion potential of TC18 titanium alloy shifts negatively, the corrosion current density increases and the corrosion intensifies. When the phase transition mechanism is satisfied, boundary movement occurs spontaneously. This model can safely be employed for complex geometric shapes and as a basis for studying crack propagation in environments that are favorable or conducive for inducing corrosion.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3