Compost Waste Heat to Power Organic Rankine Cycle Design and Analysis

Author:

Mitri Frederick B.1,Ponce Genesis1,Anderson Kevin R.1

Affiliation:

1. California State Polytechnic University Department of Mechanical Engineering, , 3801 West Temple Avenue, Pomona, CA 91768

Abstract

Abstract This paper presents a feasibility study of a hybrid compost waste heat to power/Concentrating Solar Panel (CSP) green energy Organic Rankine Cycle (ORC). The power plant is baselined to operate with a duty of 24/7 on compost waste heat and utilize solar thermal energy to boost power output during the day. This paper discusses the design of the power plant, the design of a compost driven heat exchanger/boiler, compost pile thermal analysis, CSP analysis, and simulated power plant output analysis The selection of isobutane as ORC working fluid is justified herein. A Levelized Cost of Energy (LCOE) analysis was performed to ensure that the energy produced by this hybrid power plant would come at a reasonable and competitive cost. The results herein show that the hybrid power plant affords an LCOE of 4 ¢/kWh for compost operation alone and an LCOE of 10.7 ¢/kWh for compost and CSP solar energy operation. The hybrid compost/ORC power plant presented herein affords an average energy conversion efficiency of 4.3%. Centric to the operation of the compost waste heat to power plant presented herein is the correct design and selection of the heat exchanger which interfaces the compost waste heat stream to the isobutane ORC. The design and analysis of this heat exchanger as well as commercially off-the-shelf hardware to meet the specifications is given in detail herein

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3