Sequential Design Process for Screening and Optimization of Robustness and Reliability Based on Finite Element Analysis and Meta-Modeling

Author:

Brix Nerenst Tim1,Ebro Martin2,Nielsen Morten2,Bhadani Kanishk3,Asbjörnsson Gauti3,Eifler Tobias4,Lau Nielsen Kim4

Affiliation:

1. Section of Solid Mechanics, Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark

2. Modelling & Simulation, Novo Nordisk A/S, Hilleroed 3400, Denmark

3. Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

4. Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark

Abstract

Abstract A new medical device can take years to develop from early concept to product launch. The long development process can be attributed to the severe consequences for the patient if the device malfunctions. As a result, three approaches are often combined to mitigate risks: failure modes and effects analysis (FMEA), simulation and modeling, and physical test programs. Although widely used, all three approaches are generally time consuming and have their shortcomings: The risk probabilities in FMEA’s are often based on educated guesses, even in later development stages as data on the distribution of performance is not available. Physical test programs are often carried out on prototype components from the same batch and, therefore, may not reveal the actual distribution of actual running performance. Finally, simulation and modeling are usually performed on nominal geometry—not accounting for variation—and only provide a safety factor against failure. Thus, the traditional use of safety factors in structural analysis versus the probabilistic approach to risk management presents an obvious misfit. Therefore, the aforementioned three approaches are not ideal for addressing the design engineer’s key question; how should the design be changed to improve robustness and failure rates. The present study builds upon the existing robust and reliability-based design optimization (R2BDO) and adjusts it to address the aforementioned key questions using finite element analysis (FEA). The two main features of the presented framework are screening feasible design concepts early in the embodiment phase and subsequently optimizing the design’s probabilistic performance (i.e., reduce failure rates), while using minimal computational resources. A case study in collaboration with a medical design and manufacturing company demonstrates the new framework. The case study includes FEA contact modeling between two plastic molded components with 12 geometrical variables and optimization based on meta-modeling. The optimization minimizes the failure rate (and improves design robustness) concerning three constraint functions (torque, strain, and contact pressure). Furthermore, the study finds that the new framework significantly improves the component’s performance function (failure rate) with limited computational resources.

Funder

Novo Nordisk

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3