Co-Optimization of Design and Control of Energy Efficient Hybrid Electric Vehicles Using Coordination Schemes

Author:

Fahim Muhammad Qaisar1,Villani Manfredi1,Anwar Hamza2,Ahmed Qadeer1,Ramakrishnan Kesavan3

Affiliation:

1. Department of Mechanical Engineering, Center for Automotive Research, The Ohio State University , Columbus, OH 43210

2. Department of Electrical Engineering, Center for Automotive Research, The Ohio State University , Columbus, OH 43210

3. Cummins Inc. , Columbus, IN 47201

Abstract

AbstractDesign and control co-optimization studies for hybrid vehicles have been proposed in the past. However, such works suffer from difficulties arising due to (a) diverse real- and integer-valued variables, (b) complex nonlinear powertrain dynamics and design interconnections, (c) conflicting objective functions with path constraints, and (d) high computational resources requirements. To meet these challenges, this study presents an efficient co-optimization framework for hybrid electric vehicles (HEVs) which is built using existing algorithms and coordination schemes. Particular emphasis is given to the simultaneous scheme and the decomposition-based scheme. The decomposition-based scheme with the problem decomposition proposed in this work can efficiently handle multitime scale state variables and both integer- and real-valued design and control optimization variables. This is demonstrated by solving the mixed-integer optimal design and control problem of a series hybrid vehicle over a 1-h long drive cycle with time discretization of 1 s. The problem complexity is elevated by using an increasing number of state variables (including battery state of charge, battery energy, and after-treatment system temperature), control variables (such as the engine power and engine on/off), and design parameters (such as the number of battery cells and the type and size of the engine). In addition, a multi-objective cost function is used to find a tradeoff solution between fuel consumption and emissions minimization. The results show that in terms of optimality of the solution, the decomposition-based scheme is comparable with the simultaneous but can give a 14% improvement in computational performance. The effectiveness of the proposed framework is demonstrated by comparing the co-optimization results against a baseline case in which only the optimal control problem is solved. The co-optimized solution yields up to 3.7% average genset efficiency improvement and a fuel consumption reduction to 1.6 kg from 2.5 kg, which is further reduced to 1.5 kg by adding the engine on-off control. Finally, a decision matrix is developed to provide guidance on the selection of the optimization algorithm and coordination scheme for any problem at hand.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference45 articles.

1. Fuel Consumption and Emissions Performance Under Real Driving: Comparison Between Hybrid and Conventional Vehicles;Sci. Total Environ.,2019

2. Powertrain Design and Control in Electrified Vehicles: A Critical Review;IEEE Trans. Transp. Electrif.,2021

3. Overview of Energy Harvesting and Emission Reduction Technologies in Hybrid Electric Vehicles;Renewable Sustainable Energy Rev.,2021

4. U.S.: PHEV in Use 2021,2022

5. China's NEV Sales to Account for 20% of New Car Sales by 2025, 50% by 2035;Reuters,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of New Energy Vehicle Reminder Sound System Based on Emotional Recognition Module;2023 International Conference on Telecommunications, Electronics and Informatics (ICTEI);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3