Pressure Loss Coefficients of Ductwork Fitting Combinations With and Without Vanes (Baffles)

Author:

Tawackolian Karsten1,Kriegel Martin1

Affiliation:

1. Hermann-Rietschel-Institut, Technische Universität Berlin, Energy, Comfort & Health in Buildings , Berlin 10587, Germany

Abstract

AbstractDuctwork components in ventilation systems are often installed in close proximity to each other due to space constraints. Published pressure loss coefficients are, however, only valid if there are sufficient distances between components. In this work, pressure losses of common combinations of two, three, and four bends and the addition of internal vanes were investigated with computational fluid dynamic simulations and validated with reference data. Pressure losses of combinations of bends without vanes were higher or lower than the sum of the single pressure losses of the components (combination effect), depending on the components and orientation. For bends with abrupt deflections, strong combination effects occurred; in some cases, pressure losses doubled. The spacing between the components was also a relevant factor. Combination effects were most pronounced for spacing lengths of the same order as the length of the flow separation region of the upstream bends. Consequently, certain spacer lengths were particularly unfavorable. Combination effects were found to be complex to predict and fluid simulations proved to be useful for analyzing the interactions. Adding vanes was found to be very useful. For bends and combinations with sharp deflections, the pressure loss coefficients were reduced by a factor of ten with vanes. Vanes also effectively reduced detrimental combination effects. The combination pressure losses with vanes were in all cases lower than the sum of the single components pressure losses. Pressure loss coefficients for combinations with vanes had a strong dependency on the Reynolds number. Furthermore, the downstream flow distributions were more homogeneous with vanes.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Subject

Mechanical Engineering

Reference42 articles.

1. CIBSE Guide C: Reference Data

2. Internal flow Losses: A Fresh Look at Old Concepts;ASME J. Fluids Eng.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3