Fatigue Crack Growth in Large Specimens With Various Stress Ratios

Author:

Ellyin F.1,Li H.-P.2

Affiliation:

1. Department of Mechanical Engineering, The University of Alberta, Edmonton, Alberta, Canada

2. Petroleum Machinery Research Institute, Lanzhou, Gansu, People’s Republic of China

Abstract

An experimental investigation has been carried out on large plates made of pressure vessel steel A516 Gr.70, to determine the fatigue crack growth rate. The specimen size was 914.4 × 304.8 × 12.7 mm (36 × 12 × 0.5 in.) with an initial central through crack of about 92 mm (3.6 in.). The stress ratio, R, applied to the specimens varied from zero to 0.4. This ratio was maintained constant during a test, but the stress amplitude, Δσ, at times was increased in order to obtain data under a large range of stress intensity factor, ΔK. The crack growth rate, da/dN, is expressed in terms of stress intensities, ΔK and Kmax, through a power-law-type equation. The variation of material constants with the applied stress ratio is discussed. From the data analysis, a general equation for the crack propagation rate is suggested in the form of da/dN = C (Kmax)n where C and n are functions of ΔK, Kmax and material parameters. The results are also compared with the recommended ASME Code formula and are found to be in fairly good agreement.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3