Cramer–Rao Bound Development for Linear Time Periodic Systems

Author:

Schulz Chris S.1,Kunz Donald L.1,Wereley Norman M.2

Affiliation:

1. Department of Aeronautics and Astronautics, Air Force Institute of Technology, WPAFB, OH 45433-7765

2. Department of Aerospace Engineering, University of Maryland, College Park, MD 20742

Abstract

System identification techniques are often used to determine the parameters required to define a model of a linear time invariant (LTI) system. The Cramer–Rao bound can be used to validate those parameters in order to ensure that the system model is an accurate representation of the system. Unfortunately, the Cramer–Rao bound is only valid for LTI systems and is not valid for linear time periodic (LTP) systems such as a helicopter rotor in forward flight. This paper describes an extension of the Cramer–Rao bound to LTP systems and demonstrates the methodology for a simple LTP system.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference18 articles.

1. Effects of Age and Use on Apache Main Rotor Support Characteristics;Kunz

2. A Comparison of Main Rotor Smoothing Adjustments Using Linear and Neural Network Algorithms;Miller

3. Helicopter Track and Balance With Artificial Neural Nets;Taitel;ASME J. Dyn. Syst., Meas., Control

4. Neural Networks for Smoothing of Helicopter Rotors;Wroblewski

5. Time and Frequency Domain Identification and Verification of Bo-105 Dynamic Models;Kaletka;J. Am. Helicopter Soc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Derivation and Validation of a Helicopter Rotor Model with Trailing-Edge Flaps;Journal of Guidance, Control, and Dynamics;2013-09

2. Robust Stability Analysis of a Linear Time-Periodic Active Helicopter Rotor;Journal of Guidance, Control, and Dynamics;2012-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3