Exact Analysis of Mode-III Cohesive Fracture of a Cylindrical Bar in Torsion

Author:

Song Yueming1,Levy Alan J.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall Syracuse, Syracuse, NY 13244

Abstract

Abstract The mechanics of mode-III defect initiation and quasi-static growth is examined by analyzing a torqued cylindrical bar separated at its midsection by a nonuniform, nonlinear cohesive interface. The exact analysis is based on the elasticity solution to the problem of a cylinder subjected to nonuniform shear traction at one end and an equilibrating torque at the other. The formulation leads to a pair of interfacial integral equations governing the relative rigid body rotation and the interfacial separation field. The cohesive interface is assumed to be modeled by three Needleman-type traction–separation relations characterized by a shear strength, a characteristic force length and, depending on the specific law, other parameters. Axisymmetric penny, edge, and annular interface defects are modeled by a strength function which varies with radial interface coordinate. Infinitesimal strain equilibrium solutions are sought by eigenfunction approximation of the solution of the governing interfacial integral equations. Results show that for increasing remote torque, at small values of force length, brittle behavior occurs that corresponds to sharp crack growth. At larger values of force length, ductile response occurs similar to a linear “spring” interface. Both behaviors ultimately give rise to the failure of the interface. Results for the stiff, strong interface under a small applied torque show excellent agreement with the static fracture mechanics solution of Benthem and Koiter (1973, “Asymptotic Approximations to Crack Problems,” Mechanics of Fracture, Vol. 1, G.C. Sih, ed., Noordhoff, Leyden, pp. 131–178) for the edge cracked, torsionally loaded cylindrical bar. Extensions of the theory are carried out for (i) the bi-cylinder problem and (ii) the decohesive, frictional interface problem.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3