A Computational Model of Backlay Welding for Controlling Residual Stresses in Welded Pipes

Author:

Brust F. W.1,Rybicki E. F.2

Affiliation:

1. Applied Solid Mechanics Section, Battelle Memorial Institute, Columbus, Ohio 43201

2. Department of Mechanical Engineering, University of Tulsa, Tulsa, Okla. 74104

Abstract

Intergranular Stress Corrosion Cracking (IGSCC) has been a problem in Boiling Water Reactor (BWR) piping systems. One method for retarding IGSCC is to eliminate tensile residual stresses at the pipe inner surface in the heat affected zone produced by the welding process. A method called backlay welding can be effective in producing compressive residual stresses at the pipe inner surface. This paper describes a computational model and its use in examining the effectiveness of the backlay welding process. The model has demonstrated an ability to predict weld-induced residual stresses for a variety of pipe sizes and welding conditions. Computational results for backlay welding are in agreement with residual stress data. The mechanisms causing residual stresses and the effect of the number of backlay weld layers on residual stresses are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3