Jet Impingement Heat Transfer Using Air-Laden Nanoparticles With Encapsulated Phase Change Materials

Author:

Wu W.,Bostanci H.,Chow L. C.1,Hong Y.,Ding S. J.,Su M.2,Kizito J. P.3

Affiliation:

1. e-mail:  Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816

2. NanoScience Technology Center, University of Central Florida, Orlando, FL 32816

3. Department of Mechanical Engineering, North Carolina Agricultural and Technological State University, Greensboro, NC 27411

Abstract

Nanoparticles made of polymer encapsulated phase change materials (PCM) are added in air to enhance the heat transfer performance of air jet impingement flows applied to cooling processes. Encapsulation prevents agglomeration of the PCM (paraffin) nanoparticles when they are in the liquid phase. The sizes of the particles are chosen to be small enough so that they maintain near velocity equilibrium with the air stream. Small solid paraffin particles can absorb a significant amount of energy rapidly from a heat source by changing phase from solid to liquid. Nanoparticle volume fraction is found to play an important role in determining the overall pressure drop and heat transfer of the jet impingement process. Specifically, air jets laden with 2.5% particulate volume fraction were shown to improve the average heat transfer coefficient by 58 times in the air flow speed range of 4.6 to 15.2 m/s when compared to that of pure air alone. In addition, the structural integrity of the encapsulating shells was demonstrated to be excellent by the repeated use of the nanoparticles in closed loop testing.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3