Affiliation:
1. The University of New South Wales, Kensington, N. S. W., Australia
Abstract
Assuming the short bearing approximation and constant lubricant properties, the root loci of the pertinent characteristic function were obtained for the linearized model of a simple symmetric flexible rotor bearing system. Using these loci, design maps consisting of lines of constant damping and vibration frequency pertaining to the dominant roots are presented as a function of the equilibrium eccentricity ratio and a frequency parameter for relevant degrees of flexibility. These maps display undesirable operating regions where external disturbances such as shock or unbalance loading are likely to excite undesirable vibrations, as well as regions of instability. The maps may conveniently be used to determine the effect of changing journal speed, lubricant viscosity and/or bearing clearance. Increased flexibility is seen to reduce the stability threshold in a predictable manner and to reduce damping at the pin-pin critical speed. The approach is applicable to more complex rotor bearing systems. It is felt that the use of such maps will enhance the understanding of rotor bearing system behavior, particularly at operating regions close to the stability threshold.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献