Predictively Coordinated Vehicle Acceleration and Lane Selection Using Mixed Integer Programming

Author:

Dollar R. Austin1,Vahidi Ardalan1

Affiliation:

1. Clemson University, Clemson, SC

Abstract

Autonomous vehicle technology provides the means to optimize motion planning beyond human capacity. In particular, the problem of navigating multi-lane traffic optimally for trip time, energy efficiency, and collision avoidance presents challenges beyond those of single-lane roadways. For example, the host vehicle must simultaneously track multiple obstacles, the drivable region is non-convex, and automated vehicles must obey social expectations. Furthermore, reactive decision-making may result in becoming stuck in an undesirable traffic position. This paper presents a fundamental approach to these problems using model predictive control with a mixed integer quadratic program at its core. Lateral and longitudinal movements are coordinated to avoid collisions, track a velocity and lane, and minimize acceleration. Vehicle-to-vehicle connectivity provides a preview of surrounding vehicles’ motion. Simulation results show a 79% reduction in congestion-induced travel time and an 80% decrease in congestion-induced fuel consumption compared to a rule-based approach.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3