A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning

Author:

Sun Liting1,Peng Cheng1,Zhan Wei1,Tomizuka Masayoshi1

Affiliation:

1. University of California, Berkeley, Berkeley, CA

Abstract

Safety and efficiency are two key elements for planning and control in autonomous driving. Theoretically, model-based optimization methods, such as Model Predictive Control (MPC), can provide such optimal driving policies. Their computational complexity, however, grows exponentially with horizon length and number of surrounding vehicles. This makes them impractical for real-time implementation, particularly when nonlinear models are considered. To enable a fast and approximately optimal driving policy, we propose a safe imitation framework, which contains two hierarchical layers. The first layer, defined as the policy layer, is represented by a neural network that imitates a long-term expert driving policy via imitation learning. The second layer, called the execution layer, is a short-term model-based optimal controller that tracks and further fine-tunes the reference trajectories proposed by the policy layer with guaranteed short-term collision avoidance. Moreover, to reduce the distribution mismatch between the training set and the real world, Dataset Aggregation is utilized so that the performance of the policy layer can be improved from iteration to iteration. Several highway driving scenarios are demonstrated in simulations, and the results show that the proposed framework can achieve similar performance as sophisticated long-term optimization approaches but with significantly improved computational efficiency.

Publisher

American Society of Mechanical Engineers

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3