Effect of Osmotic Pressure on Cellular Stiffness as Evaluated Through Force Mapping Measurements

Author:

Liao Hsien-Shun1,Wen Peter J.2,Wu Ling-Gang2,Jin Albert J.3

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan e-mail:

2. National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892

3. National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD 20892

Abstract

Atomic force microscopy (AFM) has been used to measure cellular stiffness at different osmolarities to investigate the effect of osmotic pressure on cells. However, substantial direct evidence is essential to clarify the phenomena derived from the experimental results. This study used both the single-point and force mapping methods to measure the effective Young's modulus of the cell by using temporal and spatial information. The single-point force measurements confirmed the positive correlation between cellular stiffness and osmolarity. The force mapping measurements provided local stiffness on the cellular surface and identified the cytoskeleton distribution underneath the plasma membrane. At hyper-osmolarity, the cytoskeleton was observed to cover most of the area underneath the plasma membrane, and the effective Young's modulus on the area with cytoskeleton support was determined to be higher than that at iso-osmolarity. The overall increase in cellular Young's modulus confirmed the occurrence of cytoskeleton compression at hyper-osmolarity. On the other hand, although the average Young's modulus at hypo-osmolarity was lower than that at iso-osmolarity, we observed that the local Young's modulus measured on the areas with cytoskeleton support remained similar from iso-osmolarity to hypo-osmolarity. The reduction of the average Young's modulus at hypo-osmolarity was attributed to reduced cytoskeleton coverage underneath the plasma membrane.

Funder

National Institute of Neurological Disorders and Stroke

National Institute of Biomedical Imaging and Bioengineering

"Ministry of Science and Technology, Taiwan"

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3