Effects of Fan Speed on Rotating Stall Inception and Recovery

Author:

Choi Minsuk1,Vahdati Mehdi1,Imregun Mehmet1

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London SW7 2BX, UK

Abstract

An implicit, time-accurate 3D compressible Reynolds-averaged Navier-Stokes (RANS) solver is used to simulate rotating stall inception and recovery, the so-called rotating stall hysteresis, in the case of a modern fan geometry. In the first instance, rotating stall was simulated for 70%, 80%, and 90% fan speeds using a whole-annulus fan model with a variable-area nozzle downstream. As the fan speed is increased, the stall cells also increase in size but their number decreases. One large stall cell is predicted to rotate along the annulus at 80% and 90% speeds, while there are three smaller cells at 70% speed. In all cases, the reverse flow is confined to the near-tip region and the rotating stall does not develop into a full-span stall because of the fan blade’s high-aspect ratio. To simulate stall recovery, the nozzle area was increased gradually at 70% and 90% speeds and the flow was seen to recover from rotating stall to reach an unstalled operating condition. The recovery process was found to be affected by the fan speed. At 70% speed, the large disturbances decay first to form almost symmetric stall cells. Thereafter, the stall cells shrink into smaller ones as the mass flow rate increases further. At 90% fan speed, a single stall cell rotates along the annulus, the disappearance of which results in recovery. An attempt has been made to explain the dependence of the stall inception and recovery patterns on the fan speed.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3