Affiliation:
1. Department of Mechanical Engineering, Imperial College London, London SW7 2BX, UK
Abstract
An implicit, time-accurate 3D compressible Reynolds-averaged Navier-Stokes (RANS) solver is used to simulate rotating stall inception and recovery, the so-called rotating stall hysteresis, in the case of a modern fan geometry. In the first instance, rotating stall was simulated for 70%, 80%, and 90% fan speeds using a whole-annulus fan model with a variable-area nozzle downstream. As the fan speed is increased, the stall cells also increase in size but their number decreases. One large stall cell is predicted to rotate along the annulus at 80% and 90% speeds, while there are three smaller cells at 70% speed. In all cases, the reverse flow is confined to the near-tip region and the rotating stall does not develop into a full-span stall because of the fan blade’s high-aspect ratio. To simulate stall recovery, the nozzle area was increased gradually at 70% and 90% speeds and the flow was seen to recover from rotating stall to reach an unstalled operating condition. The recovery process was found to be affected by the fan speed. At 70% speed, the large disturbances decay first to form almost symmetric stall cells. Thereafter, the stall cells shrink into smaller ones as the mass flow rate increases further. At 90% fan speed, a single stall cell rotates along the annulus, the disappearance of which results in recovery. An attempt has been made to explain the dependence of the stall inception and recovery patterns on the fan speed.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献