Multiobjective Optimization Under Uncertainty in Advanced Abrasive Machining Processes Via a Fuzzy-Evolutionary Approach

Author:

Abbas Adel T.1,Aly Mohamed2,Hamza Karim3

Affiliation:

1. Department of Mechanical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia e-mail:

2. Department of Mechanical Engineering, American University in Cairo, New Cairo 11835, Egypt e-mail:

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

Abstract

This paper considers multiobjective optimization under uncertainty (MOOUC) for the selection of optimal cutting conditions in advanced abrasive machining (AAM) processes. Processes considered are water jet machining (WJM), abrasive water jet machining (AWJM), and ultrasonic machining (USM). Decisions regarding the cutting conditions can involve optimization for multiple competing goals, such as surface finish, machining time, and power consumption. In practice, there is also an issue of variations in the ability to attain the performance goals. This can be due to limitations in machine accuracy or variations in material properties of the workpiece and/or abrasive particles. The approach adopted in this work relies on a strength Pareto evolutionary algorithm (SPEA2) framework, with specially tailored dominance operators to account for probabilistic aspects in the considered multiobjective problem. Deterministic benchmark problems in the literature for the considered machining processes are extended to include performance uncertainty and then used in testing the performance of the proposed approach. Results of the study show that accounting for process variations through a simple penalty term may be detrimental for the multiobjective optimization. On the other hand, a proposed fuzzy-tournament dominance operator appears to produce favorable results.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3