Thermal-Hydraulic Performance Enhancement by the Combination of Rectangular Winglet Pair and V-Shaped Dimples

Author:

Kaur Inderjot1,Singh Prashant2,Ekkad Srinath V.1

Affiliation:

1. Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695

2. Department of Mechanical & Aerospace Engineering, North Carolina State University, 911 Oval Drive, Room 3002, Engineering Building III, Raleigh, NC 27695

Abstract

Abstract This paper presents numerical study on heat transfer enhancement due to the combination of rectangular winglet pair with V-dimples in an array-type arrangement. Array of rectangular winglet pairs results in heat transfer enhancement, however, at a cost of significant pressure drop, resulting in reduced thermal-hydraulic performance (THP). On the other hand, dimples are associated with lower heat transfer enhancement levels at relatively lower pumping power penalty. To this end, a combination of rectangular winglet pair and V-shaped dimples has been studied in this paper, where the arrangements were intended to achieve enhanced thermal-hydraulic performance. Three different configurations, namely, rectangular winglet pair, rectangular winglet pair with one V-dimple between two consecutive winglets, and rectangular winglet pair with two V-dimples packed in a pitch, are studied here. The variation of heat transfer enhancement, pressure drop gain, and THP with respect to winglet-to-winglet (S) spacing variation for rectangular winglet pair and rectangular winglet pair with one V-dimple configuration is presented at a Reynolds number of 25,000. The THP of the rectangular winglet pair configuration decreases up to S/H equal to 2.5 and then increases (H: channel height). For rectangular winglet pair with one V-dimple, three values of winglet-to-dimple (P) spacings are analyzed. For fixed S/H, the highest P/H configuration provided highest heat transfer enhancement and THP. Among the three configurations studied, rectangular winglet pair with two V-dimples resulted in the highest thermal-hydraulic performance.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3